A Spatial Domain Decomposition Method for Parabolic Optimal Control Problems ?
نویسندگان
چکیده
We present a non-overlapping spatial domain decomposition method for the solution of linear–quadratic parabolic optimal control problems. The spatial domain is decomposed into non-overlapping subdomains. The original parabolic optimal control problem is decomposed into smaller problems posed on space-time cylinder subdomains with auxiliary state and adjoint variables imposed as Dirichlet boundary conditions on the space-time interface boundary. The subdomain problems are coupled through Robin transmission conditions. This leads to a Schur complement equation in which the unknowns are the auxiliary state adjoint variables on the space-time interface boundary. The Schur complement operator is the sum of space-time subdomain Schur complement operators. The application of these subdomain Schur complement operators is equivalent to the solution of an subdomain parabolic optimal control problem. The subdomain Schur complement operators are shown to be invertible and the application of their inverses is equivalent to the solution of a related subdomain parabolic optimal control problem. We introduce a new family of Neumann-Neumann type preconditioners for the Schur complement system including several different coarse grid corrections. We compare the numerical performance of our preconditioners with an alternative approach recently introduced by Benamou.
منابع مشابه
Distributed Solution of Optimal Control Problems Governed by Parabolic Equations
We present a spatial domain decomposition (DD) method for the solution of discretized parabolic linear–quadratic optimal control problems. Our DD preconditioners are extensions of Neumann-Neumann DD methods, which have been successfully applied to the solution of single elliptic partial differential equations and of linear–quadratic optimal control problems governed by elliptic equations. We us...
متن کاملAn Iterative Non-overlapping Domain Decomposition Method for Optimal Boundary Control Problems Governed by Parabolic Equations
In this paper, we consider a numerical method for solving optimal boundary control problems governed by parabolic equations. In order to avoid large amounts of calculation produced by traditional numerical methods, we establish an iterative non-overlapping domain decomposition method. The whole domain is divided into many non-overlapping subdomains, and the optimal boundary control problem is d...
متن کاملRICE UNIVERSITY Time–Domain Decomposition Preconditioners for the Solution of Discretized Parabolic Optimal Control Problems
Time–Domain Decomposition Preconditioners for the Solution of Discretized Parabolic Optimal Control Problems
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملA New Approach to Improve Ill-conditioned Parabolic
In this paper we present a new steepest-descent type algorithm for convex optimization problems. Our algorithm pieces the unknown into sub-blocs of unknowns and considers a partial optimization over each sub-bloc. In quadratic optimization, our method involves Newton technique to compute the step-lengths for the sub-blocs resulting descent directions. Our optimization method is fully parallel a...
متن کامل